PHOTOCATALYTIC HYDROGEN PRODUCTION FROM A MIXTURE OF WATER AND 2-PROPANOL ON SOME SEMICONDUCTORS

Kazunari DOMEN, Shuichi NAITO, Takaharu ONISHI, and Kenzi TAMARU

Department of Chemistry, Faculty of Science, The University of Tokyo,

Hongo, Bunkyo-ku, Tokyo 113

The photocatalytic production of $\rm H_2$ and acetone from a mixture of water and 2-propanol in gas and liquid phases was studied on some semiconductor powders such as NiO supported $\rm SrTiO_3$, CdS and $\rm TiO_2$ etc. This reaction did not proceed without $\rm H_2O$, indicating the coupling of the photodecomposition of $\rm H_2O$ and the photo-oxidation of 2-propanol.

The photo-oxidation of 2-propanol by O_2 to form acetone and H_2O has been studied on some semiconductors such as $ZnO^{1)}$ and $TiO_2^{2,3)}$. In these systems, the reaction does not take place without O_2 , which suggests some oxidizing agent is necessary for the dehydrogenation of 2-propanol. On the other hand, photocatalytic H_2 and CO_2 production from a mixture of H_2O and methanol on TiO_2 based catalysts was reported O_2 as O_3 as O_3 as O_4 as O_2 as O_3 and O_3 as O_3 as O_4 as O_3 as O_4 as O_3 as O_4 as O_4 and O_3 as O_4 as O_4 as O_4 as O_4 and O_4 as O_4 and O_4 as O_4 and O_4 as O_4 and O_4 as O_4 and O_4 as O_4 as O

We report here a photocatalytic dehydrogenation of 2-propanol to form H_2 and acetone in the presence of $\mathrm{H}_2\mathrm{O}$ on some semiconductors. A characteristic feature of this reaction is that the dehydrogenation of 2-propanol does not proceed in the absence of $\mathrm{H}_2\mathrm{O}$.

The reaction was carried out in a closed circulation system (350 ml) equipped

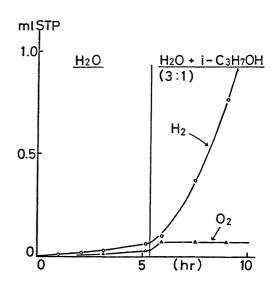


Fig. 1. Photocatalytic decomposition of H_2O + 2-propanol on NiO(2 wt%)-SrTiO₃.

with a flat bottom vessel of a Pyrex glass. The catalyst powder (ca. 1 g) was spread over the bottom (15 cm 2) and irradiated through the bottom by a 450 W high pressure mercury lamp (USHIO, UV-452). The temperature of the catalyst was 308-313 K in the stationary state under irradiation. Catalysts were evacuated at 570-670 K for 3 to 10 h before the reaction. In the case of NiO (2 wt%) supported SrTiO $_3$, the catalyst was reduced by H $_2$ (at 670 K for 20 h) and reoxidized by O $_2$ (at 670 K for 3 h) after the evacuation. The reaction products, H $_2$ and acetone, were analyzed by gas chromatography.

When NiO-SrTiO $_3$ catalyst was suspended in the water, the photodecomposition of water proceeded steadily and stoichiometric amounts of $\rm H_2$ and $\rm O_2$ were evolved as has been reported in a previous paper 5). By the addition of 2-propanol (25 vol%) during the photodecomposition of water in liquid phase, the rate of $\rm H_2$ evolution was increased two hundred times and $\rm O_2$ evolution stopped as shown in Fig. 1. Liquid phase analysis by gas chromatography demonstrated the formation of acetone (further oxidized products, such as acetic acids, were not detected) indicating that hydrogen was produced by the photodehydrogenation of 2-propanol. However, when only 2-propanol was introduced on the catalyst, very little amount of $\rm H_2$ was evolved by irradiation, and it required the addition of water (30 vol%) for the steady formation of $\rm H_2$.

CdS powder was also used for the catalyst of this reaction. When only 2-propanol (gas phase, ca. 50 Torr, $\rm H_2O$ impurity = 0.5 mol%) was introduced onto the

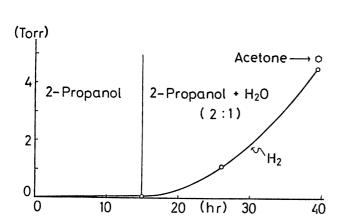


Fig. 2. Photocatalytic dehydrogenation of 2-propanol $+ H_2O$ on CdS (gas phase).

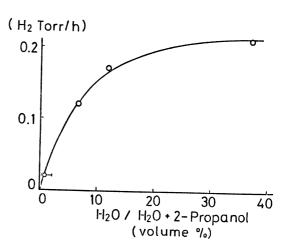


Fig. 3. Dependence of the activity of dehydrogenation of 2-propanol upon the concentration of $\rm H_2O$ on CdS.

catalyst, little amount of H_2 was produced, as shown in Fig. 2. After 15 h, H_2O (25 Torr) was added in the system and the H_2 began to be evolved in a way similar to NiO-SrTiO $_3$. The produced organic compound was only acetone, whose amount coincided with that of H_2 within a experimental error after 40 h reaction. The rate of H_2 evolution increased gradually after H_2O introduction, as shown in Fig. 2. This behavior may be associated with the reduction of the catalyst, because the color of CdS changed from bright yellow to dark yellow during the reaction.

The dependence of the activity upon the concentration of H_2O was studied. The result is shown in Fig. 3. The activity of H_2 evolution was extrapolated to zero at 0% of the concentration of water, and it was increased gradually with the increase of the volume % of H_2O . As CdS can not decompose water at all without proper modification H_2O , at 100% of H_2O , the activity is zero. The effect of H_2O on this reaction was also studied. When H_2O (300 Torr) was introduced during the course of the photodecomposition of 2-propanol and H_2O (1:1, liquid phase) on H_2O on H_2O of the rate of H_2O evolution was decreased to 2/3 of that without H_2O . In the case of CdS, the effect was more striking, that is, the evolution of H_2 stopped completely by the addition of H_2O (Fig. 4). When H_2O (300 Torr) was replaced by Ar (300 Torr), H_2O began to evolve again, but its rate was not as fast as that before the introduction of H_2O .

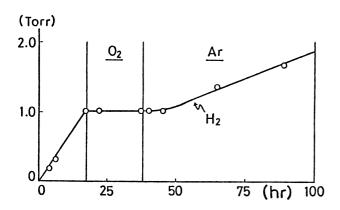


Fig. 4. Effect of 0_2 on the photocatalytic dehydrogenation of 2-propanol + H_2 0 (2:1) (liq. phase) on CdS.

CAT.	PHASE	H ₂ b)	ACETONE ^{b)}
TiO ₂	G	9.6 × 10 ⁻³	a)
SrTiO ₃	G	~0	_0
CdS	G	2.5 * 10-1	2.7 × 10 ⁻¹
CdSe	G	0	0
WOз	G	0	3.5 × 10 ⁻²
Zn0	G	0	0
NiO-SrTiO3	G	4.5 * 10 ⁻¹	a)
NiO-SrTiO3	L	3.7	a)
Pt-CdS	L,	3.9	a)

Table 1. Activities of photocatalytic dehydrogenation of 2-propanol $+ \rm H_2O$ (1:1) on various semiconductor powders.

a): not measured

b): Torr/h

The results on some othre semiconductors are summarized in Table 1. $SrTiO_3$, CdSe and ZnO were inactive for this reaction. In the case of WO_3 powder, acetone was produced without the evolution of H_2 . The color of the catalyst changed from yellowish green to blue as the reaction proceeded, indicating the photoreduction of WO_3 by 2-propanol.

Considering these results, we tentatively propose that the photocatalytic reaction on NiO-SrTiO_3 , TiO_2 (anatase) and CdS should be regarded as a coupling reaction of photodecomposition of H_2O and (photo-)oxidation of 2-propanol as follows:

$$2H_2O$$
 (1 or g) \rightleftharpoons $2H^+(a) + 2OH^-(a)$ (1)

$$2H^{+}(a) + 2e^{-} \rightarrow H_{2}(g)$$
 (2)

$$2-propano1(1) + 20H-(a) + 2h+ \longrightarrow acetone(1) + 2H2O(1)$$
 (3)

2-propano1(1)
$$\longrightarrow$$
 H₂(g) + acetone(1) (4)

For the photodecomposition of water on these catalysts, the evolution of O_2 , step (5), may be a rate determining step. Especially on CdS, the reaction does not proceed.

$$40H^{-}(a) + 4h^{+} \longrightarrow 2H_{2}O(1) + O_{2}(g)$$
 (5)

Since 2-propanol acts as a reducing agent for an oxidized species, $\rm H_2$ can be evolved on CdS and also the rate of $\rm H_2$ evolution is increased by the addition of 2-propanol on NiO-SrTiO $_3$.

The effect of $\mathbf{0}_2$ may be explained by the composition of step (3) and step (6) on the surface.

$$2-\text{propanol}(1) + \frac{1}{2}O_2(g) \longrightarrow \text{acetone}(1) + H_2O(1)$$
 (6)

In the case of CdS catalyst, added oxygen may oxidize the surface, which causes the deactivation of the catalyst and also explains the reason why photodecomposition of $\rm H_2O$ does not proceed on the surface.

References

- 1) Y. Fujita, Shokubai (Catalyst), 3, 235 (1961).
- 2) R.I. Bickley, G. Münuera and, F.S. Stone, J. Catalysis, 31, 398 (1973).
- 3) R.B. Cundall, R. Rudham, and M.S. Salim, Trans. Faraday Soc., 72, 1642 (1976).
- 4) T. Kawai, and T. Sakata, J. Chem. Soc., Chem. Comm., 694 (1980).
- 5) K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamaru, J. Chem. Soc., Chem. Comm., 543 (1980).
- 6) K. Kalyanasunderam, E. Borgarello, and M. Grätzel, Helv. Chim. Acta, 64, 362 (1981).

(Received December 11, 1981)